Characteristic function

In probability theory, the characteristic function of a random variable... The method of characteristic functions is one of the main tools of the analytic theory of probability. This appears very clearly in the proofs of limit theorems and, in particular, in the proof of the central limit theorem, which generalizes the De Moivre-Laplace theorem.
Definition
If XX is a scalar random variable with distribution FXF_{X} then its characteristic function isφX(t)=EeitX=ReitxdFX(x),\begin{equation*}\varphi_{X}(t) = \mathbb{E} e^{i t X} = \int_{\mathbb{R}} e^{i t x} \text{d} F_{X}(x),\end{equation*}where ii is the imaginary unit and tRt \in \mathbb{R}.
If FX(x)F_{X}(x) has a density f=f(x)f=f(x) thenφX(t)=EeitX=Reitxf(x)dx.\begin{equation*}\varphi_{X}(t) = \mathbb{E} e^{i t X} = \int_{\mathbb{R}} e^{i t x} f(x) \text{d} x .\end{equation*}In other words, in this case the characteristic function is just the Fourier transform of f(x)f(x).

Examples

Properties of characteristic function

Uniqueness

The inversion formula for characteristic function

References